

1 The effects of meteorological parameters and

2 diffusive barrier reuse on the sampling rate of

3 a passive air sampler for gaseous mercury

4

5 David S. McLagan,¹ Carl P. J. Mitchell,¹ Haiyong Huang,¹ Batual Abdul Hussain,¹ Ying Duan Lei,¹
6 Frank Wania^{1,*}

7

¹ Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Toronto, Ontario, Canada

10

11 * Corresponding Author – email: frank.wania@utoronto.ca; phone: +1 416-287-7225

12 **ABSTRACT**

13 Passive air sampling of gaseous mercury (Hg) requires a high level of accuracy to discriminate
14 small differences in atmospheric concentrations. Meteorological parameters have the potential
15 to decrease this accuracy by impacting the sampling rate (*SR*), i.e., the volume of air that is
16 effectively stripped of gaseous mercury per unit of time. We measured the *SR* of a recently
17 calibrated passive air sampler for gaseous Hg in the laboratory under varying wind speeds
18 (wind-still – 6 m s⁻¹), temperatures (-15 – 35 °C), and relative humidities (44 – 80%). While
19 relative humidity has no impact on *SR*, *SR* increases slightly with both wind speed (0.003 m³
20 day⁻¹ increase in *SR* or 2.5% of the previously calibrated *SR* for every m s⁻¹ increase for wind
21 speeds > 1 m s⁻¹, typical of outdoor deployments) and temperature (0.001 m³ day⁻¹ increase in
22 *SR* or 0.7% for every 1 °C increase). The temperature dependence can be fully explained by the
23 effect of temperature on the molecular diffusivity of gaseous mercury in air. Although these
24 effects are relatively small, accuracy can be improved by adjusting *SRs* using measured or
25 estimated temperature and wind speed data at or near sampling sites. We also assessed the
26 possibility of reusing Radiello® diffusive barriers previously used in the passive air samplers. The
27 mean rate of gaseous Hg uptake was not significantly different between new and previously
28 used diffusive barriers in both lab and outdoor deployments, irrespective of the applied
29 cleaning procedure. No memory effect from Radiellos® previously deployed in a high Hg
30 atmosphere was observed. However, a loss in replicate precision for the dirtiest Radiellos® in
31 the indoor experiment suggests that cleaning is advisable prior to reuse.

32 **KEYWORDS**

33 Passive air sampling, Hg, atmosphere, calibration, green chemistry

34 **1. INTRODUCTION**

35 Fine spatial resolution measurements of atmospheric contaminants are difficult and expensive,
36 especially at remote locations and in developing countries. By allowing for simultaneous, cost-
37 effective measurements at a multitude of sites, passive air samplers (PASs) are useful,
38 complementary monitoring tools in atmospheric science. PASs can be deployed in high
39 numbers, at sites away from sources of electricity, and in locations where the costs and logistics
40 of active sampler deployments can be prohibitive (McLagan et al., 2016a). In order for a PAS to
41 yield volumetric air concentration data, a sampling rate (*SR*), i.e., the volume of air that is
42 effectively stripped of the contaminant of concern per unit of time, needs to be derived. This is
43 done either in calibration experiments that deploy the PAS concurrently with reliable active
44 sampling techniques or theoretically based on an understanding of the processes controlling
45 mass transfer from atmosphere to PAS sorbent (Armitage et al., 2013; Gustin et al., 2011; Skov
46 et al., 2007). Any uncertainty and bias in the *SR* is directly propagated to the volumetric air
47 concentration derived from a PAS. Accordingly, a reliable PAS requires that the impact of
48 various factors influencing the *SR* is, in order of preference, either eliminated, minimized or
49 quantifiable and predictable.

50 A common conceptual model of uptake in PASs assumes a stagnant air layer or air-side
51 boundary layer (ASBL) around the sorbent, through which contaminant transfer occurs solely by
52 molecular diffusion (McLagan et al., 2016a; Shoeib and Harner, 2002). Wind decreases the
53 thickness of the ASBL which in turn increases the *SR* (Bartkow et al., 2005; Moeckel et al., 2009;
54 Pennequin-Cardinal et al., 2005). Diffusive barriers aim to reduce the influence of wind by
55 standardizing the molecular diffusion distance to the sorbent and thereby ensuring that the
56 diffusive component of contaminant transfer is the rate limiting step (Huang et al., 2014;
57 Lozano et al., 2009; McLagan et al., 2016a). For PASs with diffusive barriers the ASBL is shifted
58 from the outside of the sorbent to the outside of the diffusive barrier (McLagan et al., 2016b).
59 While a diffusive barrier thus reduces the relative contribution of the ASBL to the overall
60 diffusion distance, it cannot entirely mitigate *SR* variability caused by wind (Pennequin-Cardinal
61 et al., 2005; Plaisance et al., 2002; Skov et al., 2007). Protective shields around the sorbent or

62 diffusive barrier are often employed to further reduce the influence of wind by reducing the
63 face velocities at these surfaces. However, like diffusive barriers, they too are not likely to
64 completely eliminate the influence of wind on the thickness of the ASBL (Huang et al., 2014).

65 Temperature has the potential to affect *SR* in two ways: (i) changing the rate of gas phase
66 diffusion of the contaminant due to the temperature dependence of molecular diffusion
67 coefficients (Armitage et al., 2013; Huang et al., 2014; Lozano et al., 2009); and (ii) shifting the
68 partitioning equilibria between the sorbent and the gas phase (Armitage et al., 2013; Lozano et
69 al., 2009; McLagan et al., 2016a). Relative humidity (RH) may affect *SRs* by influencing the
70 sorptive properties of certain sorbents for target analytes (Huang et al., 2014). Other factors
71 that may affect the sorption of contaminants to PAS sorbents include passivation of sorbents
72 (interfering compounds blocking sorbent uptake sites or stripping analytes through reaction)
73 (Brown et al., 2012; Gustin et al., 2011), degradation of the sorbent over time (Brown et al.,
74 2011; McLagan et al., 2016a), and uptake of the contaminant to the sampler housing or
75 diffusive barrier (Gustin et al., 2011; Huang et al., 2014; McLagan et al., 2016a).

76 Mercury is a persistent, bioaccumulative, and toxic contaminant of global concern that has
77 come under greater international scrutiny with the adoption of the Minamata Convention
78 (UNEP, 2013). A key stipulation under Article 19 of the convention “Research, Development and
79 Monitoring” is the requirement of participating parties to improve current monitoring networks
80 (UNEP, 2013). A PAS for measuring atmospheric Hg could play an important role in this context,
81 if it can be shown to be suitable for monitoring long-term background concentrations,
82 concentration gradients in and around Hg sources, and personal exposure levels (McLagan et
83 al., 2016a). Gaseous elemental Hg (GEM) is generally the dominant form of atmospheric Hg
84 (typically making up >95%), due to its high atmospheric residence time of ~1 year (Driscoll et
85 al., 2013; Pirrone et al., 2010; Selin, 2009), especially at sites remote from combustion sources
86 (McLagan et al., 2016a; Peterson et al., 2009; Rutter et al., 2009). The long atmospheric
87 residence time of GEM results in fairly uniform background concentrations within each
88 hemisphere, with much of the global atmosphere having levels within <25% of the hemispheric
89 average (Gustin et al., 2011). PASs capable of discriminating such small concentration variability

90 require high accuracy and precision, i.e. *SRs* need to be well characterized and repeatable.
91 Existing PASs for gaseous mercury have struggled to achieve the accuracy and precision
92 necessary for background monitoring due to inadequate detection limits or highly variable *SRs*
93 (Huang et al., 2014; McLagan et al., 2016a).
94 We recently introduced a PAS for gaseous Hg with a precision based uncertainty of $2 \pm 1\%$ that
95 uses an activated carbon sorbent and a Radiello® diffusive barrier (McLagan et al., 2016b).
96 While it is believed that the sampler takes up predominantly GEM, we cannot rule out the
97 possibility for gaseous oxidized Hg to also pass through the diffusive barrier (McLagan et al.,
98 2016b). We therefore use the term gaseous Hg to define the target analyte. An earlier
99 calibration of this PAS at one outdoor location yielded a *SR* of $0.121 \text{ m}^3 \text{ day}^{-1}$ (McLagan et al.,
100 2016b). Here we report on a series of laboratory experiments that quantified the effect of wind
101 speed, temperature, and RH on the *SR* of that sampler. We additionally explored the possibility
102 of reusing the Radiello® diffusive barrier in multiple deployments in order to further reduce the
103 costs associated with the sampler's use. During deployment, the inside of the Radiello® can
104 become covered in sorbent dust. It is also possible that atmospheric components, e.g.
105 atmospheric particulate matter and oxidants, sorb to or react with the diffusive barrier during
106 deployment. Thus, in addition to meteorological impacts on the PAS's *SR*, we also explored the
107 effect of prior use and cleaning of the diffusive barrier on the uptake of Hg in the PAS.

108 **2. METHODS**

109 **2.1 Sampler Design**

110 The sampler consists of a porous stainless steel mesh cylinder, filled with $\sim 0.7 \text{ g}$ of sulphur-
111 impregnated activated carbon sorbent (HGR-AC; Calgon Carbon Corp.), which is inserted into a
112 Radiello® radial diffusive body (Sigma Aldrich), which itself is placed inside a polyethylene-
113 terephthalate protective jar. During deployments the opening of the jar, covered with a
114 polypropylene (PP) mesh screen, is facing down. After sampling the jar is sealed with a PP cap
115 and PTFE tape for transport and storage. McLagan et al. (2016b) provide more detail on the PAS
116 design.

117 **2.2 Study Design**

118 **2.2.1 WIND.** PAS in four different configurations were exposed to different wind conditions in
119 the laboratory at the University of Toronto Scarborough: (1) regular, white Radiello® with
120 windshield, (2) white Radiello® without windshield, (3) thick-walled, less porous, yellow
121 Radiello® with windshield, and (4) yellow Radiello® without windshield. Adopting the
122 experimental setup of Zhang et al. (2013), electronic fans (Delta Electronics Inc., model number:
123 BFC1212B) were employed to generate wind for each individual sampler. The angle of wind
124 incidence was always 90°, i.e. we simulated wind that is blowing parallel to the surface. Wind
125 speeds of 1, 1.5, 2, 3, 4, 5, and 6 m s⁻¹ were achieved by manipulating the distance between
126 PASs and fan (see Fig. S1 and Fig. S2). Wind speeds for each individual PAS were measured
127 every 5 seconds with a hot-wire Anemometer/Thermometer (Traceable®, VWR International)
128 for five minutes before and five minutes after each deployment. As such, average wind speeds
129 of individual samplers within each wind speed treatment varied slightly (Fig. 1). “Wind-still”
130 experiments without fans were performed for comparison (with wind speed assumed to be
131 0.05 m s⁻¹).

132 While experiments with white Radiellos (configuration 1 and 2) generally lasted one week,
133 additional experiments lasting two, three, and four weeks were performed at selected wind
134 speeds (3 and 6 m s⁻¹). Experiments with yellow Radiellos (configurations 3 and 4) lasted two
135 weeks (the lower SR of yellow Radiello® requires longer deployment times to reach detection
136 limits) and were only performed at wind speeds of 3 and 6 m s⁻¹, as well as without fans.
137 Additionally, a 3 months uptake experiment under wind-still conditions was performed in order
138 to obtain a precise SR of the PAS with a white Radiello deployed indoors with a protective
139 shield. Eighteen samplers were deployed at the same time and triplicates were removed after
140 15, 28, 46, 56, 70 and 84 days. The earlier indoor calibration experiment described in McLagan
141 et al. (2016b) had been performed without a windshield.

142 Temperature and RH, monitored before, after, and periodically during each individual
143 experiment, ranged from 21.9 – 24.2 °C and from 32 – 53%. While there was some variation in

144 the gaseous Hg concentration as recorded by the Tekran 2537A between deployments, the
145 average concentration across all wind experiments was $1.9 \pm 0.3 \text{ ng m}^{-3}$.

146 **2.2.2 TEMPERATURE & RELATIVE HUMIDITY.** The regular PAS configuration (configuration 1)
147 was exposed to eight different combinations of temperature and RH (Table 1) for two weeks
148 periods in climate controlled walk-in chambers located at the Biotron Facility of Western
149 University in London, Ontario. Each experiment was replicated five times. Samplers were
150 attached to metal shelving units near the centre of the chambers where a continuous flow of
151 air from the outflow of the climate control units of $1.1 - 2.3 \text{ m s}^{-1}$ was observed using the hot-
152 wire Anemometer over a two minute period at the completion of each experiment. The
153 average actively measured gaseous Hg concentration across all temperature and RH
154 experiments was $2.2 \pm 0.9 \text{ ng m}^{-3}$.

155 **Table 1: Combinations of temperature and relative humidity during the eight experiments performed**
156 **in climate-controlled chambers**

Temp (°C)	-15.0±0.1	5.0±0.0	12.5±0.1	19.9±0.0	20.0±0.1	20.0±0.1	27.5±0.0	35.0±0.0
RH%	68±1	77±1	76±2	44±5	60±1	80±0	60±1	45±3

157

158 **2.2.3 RADIELLO® REUSE.** The potential impacts of sorbent dust accumulation or atmospheric
159 contamination during prolonged deployment periods on sampling rates and therefore on the
160 ability to reuse the Radiello® diffusive barriers are unknown. Currently, new diffusive barriers
161 are used for each deployment. In this experiment, previously used Radiellos® were redeployed
162 after different cleaning procedures were applied. Six cleaning treatments were applied: *new*
163 (unused Radiellos®), *uncleaned* (unaltered after previous deployments), *physical* (physical
164 agitation with funnel brushes and compressed air blow down), *soap* (Citranox® detergent,
165 cleaning brushes, and deionized water, compressed air blow down, deionized water rinse and
166 sonication and air drying), *acid* (six hour soak in 20% HNO₃ bath, deionized water rinse,
167 compressed air blow down, deionized water rinse and sonication and air drying), and *heat-acid*
168 (six hour soak in 20% HNO₃ bath at 40 °C, deionized water rinse, compressed air blow down,
169 deionized water rinse and sonication and air drying). Prior to cleaning, diffusive bodies were

170 categorized based on the extent of visible dust coating using a 5 point scale (0 – new, 1 – very
171 low, 2 – low, 3 – moderate, 4 – high, and 5 – very high). To the extent this was possible with a
172 limited stock of previously deployed Radiellos®, we evenly distributed Radiellos® of variable
173 dust coating among the treatments (see Table S1 for details). We also tested Radiellos®
174 previously deployed in contaminated environments with very high gaseous Hg concentrations
175 ($\sim 100 - 10000 \text{ ng m}^{-3}$) to assess whether such deployments led to a memory effect whereby
176 sorbed Hg is released from the diffusive body during subsequent uses. All samplers from this
177 *memory* treatment contained moderate dust coating and were not cleaned.

178 Five replicate samplers for each of the 7 treatments were deployed for a period of two weeks in
179 a laboratory with slightly elevated Hg concentrations (previously measured as $\sim 5-10 \text{ ng m}^{-3}$) at
180 the University of Toronto Scarborough. Additionally, five different replicate samplers for each
181 of the three treatments *new*, *uncleaned*, and *soap* were exposed for 34 days outdoors on the
182 campus of the University of Toronto Scarborough (43.78714°N , 79.19049°W). In this case, all
183 previously used Radiellos® were heavily dust coated (category 4 or 5, see Table S2 for details).
184 In both the indoor and outdoor experiment all samplers were deployed concurrently.
185 Therefore, no active gaseous Hg measurements were necessary and the mass of sorbed Hg
186 could be directly compared and was used in data analysis.

187 **2.2.4 ACTIVE GASEOUS MERCURY MEASUREMENTS.** A Tekran 2537A (Tekran Instruments Corp.)
188 was used to measure the gaseous Hg concentrations at 5 min intervals throughout all wind,
189 temperature and RH experiments. A sampling inlet that combined a 2 m Teflon tube connected
190 to a $0.2 \mu\text{m}$ PTFE filter was used (detailed setup is given in: (Cole and Steffen, 2010; Steffen et
191 al., 2008)). Auto-calibrations were made using the internal Hg permeation unit every 25 hrs and
192 these were verified through manual injections from a Tekran 2505 Mercury Vapor Primary
193 Calibration Unit (Tekran Instruments Corp.) before and after each set of experiments. Quality
194 control and assurance of the Tekran 2537A data sets followed the Environment Canada
195 Research Data Management and Quality Control system (Steffen et al., 2012).

196 2.2.5 SAMPLING RATE CALCULATION. *SRs* ($\text{m}^3 \text{ day}^{-1}$) were calculated using:

197
$$SR = \frac{m}{(C t)} \quad (1)$$

198 where m is the mass of sorbed mercury (ng), C is the concentration of gaseous Hg measured by
199 the Tekran 2537A (ng m^{-3}), and t is the deployment time of the PAS (days). With the exception
200 of the 3-months experiment, the *SRs* were derived from single point calibrations using Eq. (1).
201 *SRs* derived from a single deployment have a higher uncertainty than *SRs* derived from
202 experiments involving multiple simultaneous deployments of variable length, such as those
203 described in McLagan et al. (2016b). This uncertainty is further increased when deployment
204 times are short and gaseous Hg concentrations are low, as m will be closer to quantification
205 limits. To nevertheless constrain the uncertainties from the experiments described here, we
206 performed a high number of replications. In the wind experiments, true replication was not
207 possible, as wind speed varied slightly between each deployment. While they cannot be called
208 replicates, we performed a very large number of individual experiments, which allowed for the
209 derivation of a robust relationship between *SR* and wind speed. Additionally, the variable length
210 of the experiments at selected wind speeds not only added to the number of data points, but
211 also allowed us to assess if there was any effect of deployment time on *SR*.

212 **2.3 Analyses**

213 Total Hg (THg) in the activated carbon sorbent was quantified using thermal combustion,
214 amalgamation, and atomic absorption spectroscopy in oxygen (O_2) carrier gas (USEPA Method
215 7473) using an AMA254 (Leco Instruments Ltd.) (USEPA, 2007). Because the sorbent in a PAS
216 cannot be assumed to take up Hg homogeneously, the entire carbon from each PAS was
217 analyzed in two aliquots of up to 0.45 g each. In order to increase the lifetime of AMA254
218 catalyst tubes while processing samples with high sulphur content, catalyst tubes were
219 amended with 5 g of sodium carbonate (Na_2CO_3) and ~ 0.15 g of Na_2CO_3 was added directly to
220 each sample boat (McLagan et al., submitted). Samples were dried for 30 seconds at 200 °C and
221 thermally decomposed at 750 °C for 330 seconds, while gaseous elemental Hg was trapped on
222 the gold amalgamator. After combustion the system was purged for 60 seconds to ensure all

223 pyrolysis gases were removed from the catalyst. Throughout the analysis the catalyst was
224 heated to 550 °C. After purging, the amalgamator was heated to 900 °C for 12 seconds to
225 release the trapped Hg into the cuvette where absorption at 253.65 nm was measured by dual
226 detector cells for both low and high absolute amounts of Hg.

227 The instrument was calibrated by adding varying amounts of Hg liquid standard for AAS (1000 ±
228 5 mg l⁻¹; in 10% w/w HCl; Inorganic Ventures) to ~0.22 g of clean (unexposed) HGR-AC. ~0.15 g
229 of Na₂CO₃ was added on top of the liquid standard and HGR-AC. In all experiments absolute
230 amounts of Hg were less than 20 ng and the high cell was therefore not required for
231 quantification. The low cell calibration included standards of 0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15,
232 and 20 ng of Hg (uncertainty in autopipette is 1 ± 0.004 ng) fitted with a linear relationship.

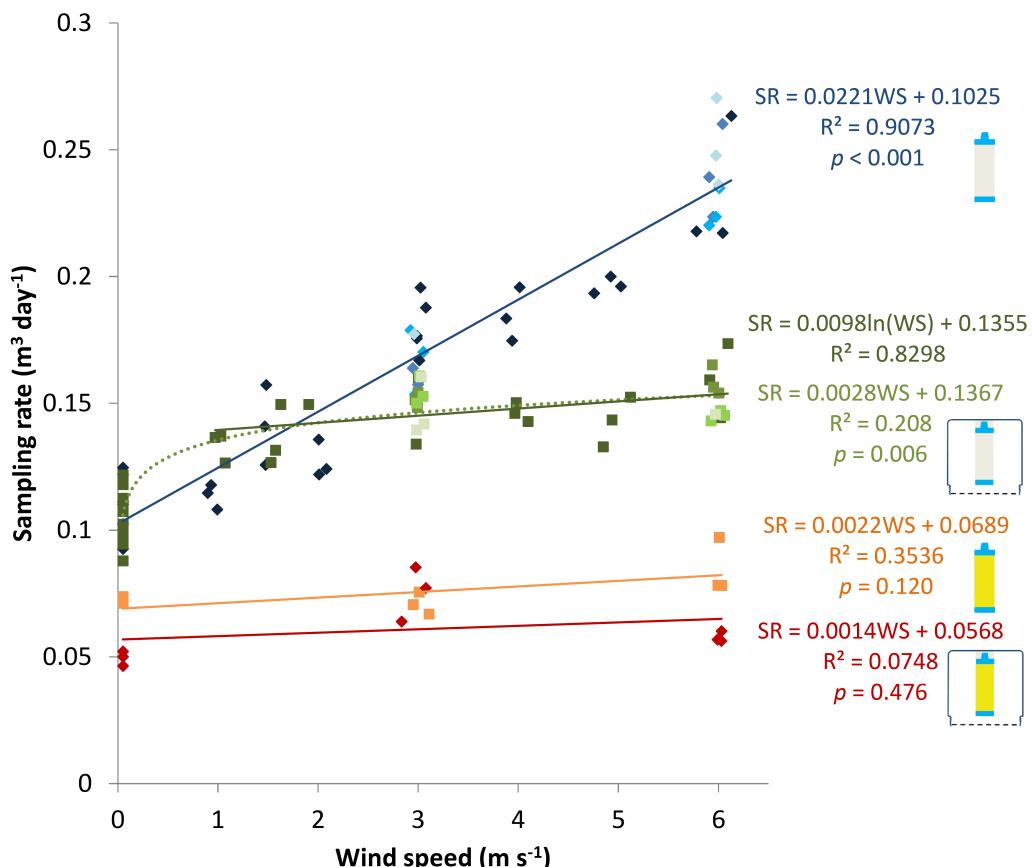
233 **2.4 Quality Assurance and Control**

234 Both analytical and field blanks were included in all experiments. Analytical blanks represented
235 analyses of clean HGR-AC with mean concentration of 0.3 ± 0.2 ng g⁻¹ of HGR-AC (n=14). Field
236 blanks, taken both at the start and end of each experiment, were taken to the site, opened,
237 deployed, and then immediately taken down, sealed and stored for analysis. The mean field
238 blank concentration for the wind experiments (n=7), the temperature/RH experiments (n=5),
239 and the Radiello® reuse experiments (n=4) were 0.5 ± 0.2 ng g⁻¹, 0.58 ± 0.15 ng g⁻¹ and 0.38 ±
240 0.08 ng g⁻¹ of HGR-AC, respectively. All results are blank adjusted by subtracting the mean field
241 blank concentration for each experiment multiplied by the mass of HGR-AC in that sample.

242 Analytical precision was monitored throughout the experiments (approximately every 10-15
243 instrumental runs) by analyzing 5 or 10 ng Hg liquid Standards for AAS added to ~0.22 g of HGR-
244 AC. Recoveries for precision testing were 100.1 ± 1.6 (n=62), 100.0 ± 1.3 (n=24), and 100.0 ± 1.3
245 (n=21) % for the wind, temperature/RH, and reuse experiments, respectively. Recovery was
246 monitored throughout the experiments (approximately every 10-15 runs) by analyzing a high
247 sulphur, bituminous coal standard reference material, NIST 2685c (S = 5 wt%; National Institute
248 of Standards and Technology), or our own in-house reference material, RM-HGR-AC1
249 (powdered HGR-AC loaded with Hg by exposure to air for four months then homogenized; 23.1

250 $\pm 0.8 \text{ ng g}^{-1}$ based on 198 analytical runs). Recoveries of NIST 2685c were 101 ± 3 (n=35), $102 \pm$
251 3 (n=14), and 99 ± 4 (n=10) % for the wind, temperature/RH, and reuse experiments,
252 respectively. Recoveries of RM-HGR-AC1 were 98 ± 3 (n=43), 97 ± 2 (n=13), and 96 ± 2 (n=10) %
253 for the wind, temperature/RH, and reuse experiments, respectively. All statistical tests were
254 either performed by hand or using R v3.3.2 (R Foundation for Statistical Computing).

255 **3. RESULTS AND DISCUSSION**


256 **3.1 Wind**

257 The effect of wind speed on *SR* varied considerably across the four tested PAS configurations
258 (Fig. 1). The greatest effect was observed for white Radiello® without windshield (configuration
259 2), which is a configuration that is unlikely to be used in practice. A positive linear relationship
260 across the tested wind speed range (wind still to 6 m s^{-1}) had a slope indicative of a 0.022 m^3
261 day^{-1} (or 18% of the calibrated SR) increase in *SR* for every 1 m s^{-1} increase in wind speed (Fig.
262 1). Previous investigators, using the white Radiello® (without protective shield) to monitor
263 varying atmospheric contaminants, fitted logarithmic (Pennequin-Cardinal et al., 2005;
264 Plaisance, 2011; Skov et al., 2007) or quadratic (Plaisance et al., 2004) relationships to data
265 describing the effect of wind speed on *SR*. The *SR* was most sensitive at lower wind speeds.
266 However, due to the limited number or range of measured wind speeds, or high data
267 uncertainty, a linear relationship fits some of these data equally well (McLagan et al., 2016a).

268 The addition of the windshield (configuration 1), which is the current method of practice,
269 reduced the effect of wind speed on the *SR*, particularly at higher wind speeds. The best fit of
270 the data was a logarithmic relationship (linear fit: $R^2 = 0.66$) in which *SR* was most sensitive to
271 wind speed between 0 and 1 m s^{-1} (Fig. 1). While average wind speeds of less than 1 m s^{-1} are
272 common for indoor deployments, outdoors average wind speeds typically exceed 1 m s^{-1} (98.3%
273 of data from $0^\circ 10'$ resolution global data set of monthly averaged wind speeds at 10 m above
274 ground level between 1961 and 1990 (New et al., 2002)). When we consider only the data $>1 \text{ m}$
275 s^{-1} we observe a slight, but significant, positive linear relationship between *SR* and wind speed
276 ($p=0.006$) corresponding to a $0.003 \text{ m}^3 \text{ day}^{-1}$ (or 2.5% or the previously calibrated SR) increase

277 in *SR* for every m s^{-1} increase in wind speed (Fig. 1). Neither configuration with the thicker,
278 yellow Radiello® led to a significant effect of wind speed on *SR* (Fig. 1). With the protective
279 shield in place the *SR* was approximately 10% lower than without the protective shield.
280 Plaisance (2011) also noted a negligible effect of wind speed on *SR* using a yellow Radiello® PAS
281 without any protective shield when monitoring benzene.

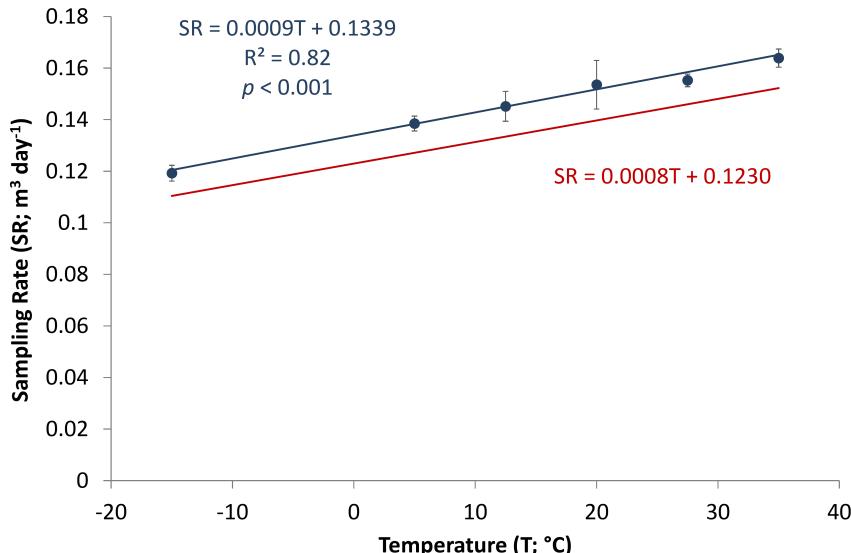
282
283 **Figure 1: The effect of wind speed on the sampling rate of four different configurations of a passive air**
284 **sampler for gaseous mercury. Configuration 1: White Radiello®, with protective shield (1 week: ■,**
285 **2 week: □, 3 week: ▲, and 4 week: ▢ deployments); Configuration 2: White Radiello®, without**
286 **protective shield (1 week: ♦, 2 week: ♦, 3 week: ♦, and 4 week: ♦ deployments); Configuration 3:**
287 **Yellow Radiello®, with protective shield (■); Configuration 4: White Radiello®, without protective**
288 **shield (♦). Sampling rate, wind speed relationships are based on all data for each configuration**
289 **irrespective of deployment length.**

290 The importance of a diffusive barrier is illustrated by the very strong effect of wind speed on
291 the *SR* of another PAS for gaseous Hg that also utilizes an activated carbon sorbent, but has no

292 diffusive barrier: the *SR* increased by $0.126 \text{ m}^3 \text{ day}^{-1}$ (or 97% of the calibrated *SR*) for every m s^{-1}
293 increase in wind speed (Guo et al., 2014; Zhang et al., 2012). This information and the results
294 here demonstrate the merit of employing both diffusive barriers and protective shield in
295 reducing the effect of wind speed on *SR*. The diffusive path length of the PAS has three
296 components: (1) the ASBL, (2) the diffusive barrier (adjusted for the porosity of the diffusive
297 barrier), and (3) the internal airspace of the Radiello® (McLagan et al., 2016b). Employing a
298 thicker, less porous diffusive barrier (yellow Radiello®) increases the diffusive path length of the
299 diffusive barrier component, in turn reducing the *SR*. By reducing turbulence on the outside of
300 the diffusive barrier, the protective shield essentially increases the thickness of the ASBL
301 (McLagan et al., 2016b), leading to a reduction in *SR*.

302 Because the samplers were not exposed to exactly the same wind speeds, it is not possible to
303 construct uptake curves from the experiments with variable deployment length. It is, however,
304 possible to test whether the measured *SRs* depend on the length of the single point
305 calibrations. The relationship between deployment length and *SR* was not significant ($p > 0.05$),
306 irrespective of the applied wind speed (wind-still, $\sim 3 \text{ m s}^{-1}$, and $\sim 6 \text{ m s}^{-1}$) or configuration (1 and
307 2); see Fig. S3 for details. This confirms that the *SRs* derived from short one-week deployments
308 were neither biased high or low.

309 The 3-month uptake experiment under wind-still conditions produced a *SR* of $0.106 \pm 0.009 \text{ m}^3$
310 day^{-1} when calculated as the average of single point calibrations (see Fig. S4 for uptake curve).
311 The slope of the regression of m against C^*t (McLagan et al., 2016b; Restrepo et al., 2015) gave
312 a very similar *SR* of $0.109 \pm 0.009 \text{ m}^3 \text{ day}^{-1}$. Because the latter method is thought to give a
313 slightly more reliable *SR* (McLagan et al., 2016b; Restrepo et al., 2015), we suggest to use this
314 *SR* for indoor deployments of the PAS using the white Radiello and a windshield (configuration
315 1). This *SR* is 9.9% lower than the *SR* obtained in an earlier outdoor calibration study, despite
316 the higher temperature ($\sim 23^\circ\text{C}$) indoors than outdoors (mean temperature across all
317 deployments: 7.6°C). Additionally, the replicate precision of samplers from this uptake
318 experiment for the wind-still data with the protective shield ($11 \pm 8\%$) was significantly poorer
319 ($p < 0.001$) than in the outdoor calibration study with the same sampler setup ($2 \pm 1.3\%$; mean



320 wind speed 1.89 m s^{-1}) (McLagan et al., 2016b). Both the lower *SR* and the greater uncertainty
321 of the *SR* are consistent with the effect of wind observed for this configuration (green markers
322 in Fig. 1): At the low wind speeds of indoor deployments ($< 1 \text{ m s}^{-1}$), the *SR* is expected to be
323 both lower and more sensitive to changes in wind speed. Although, conditions for this
324 experiment were labelled “wind-still”, in reality any activity within the laboratory (movement of
325 lab personnel, opening and closing of doors, etc.) will result in small variations in wind speeds
326 around the PAS within the range where the *SR* is most sensitive to such variations (Zhang et al.,
327 2013).

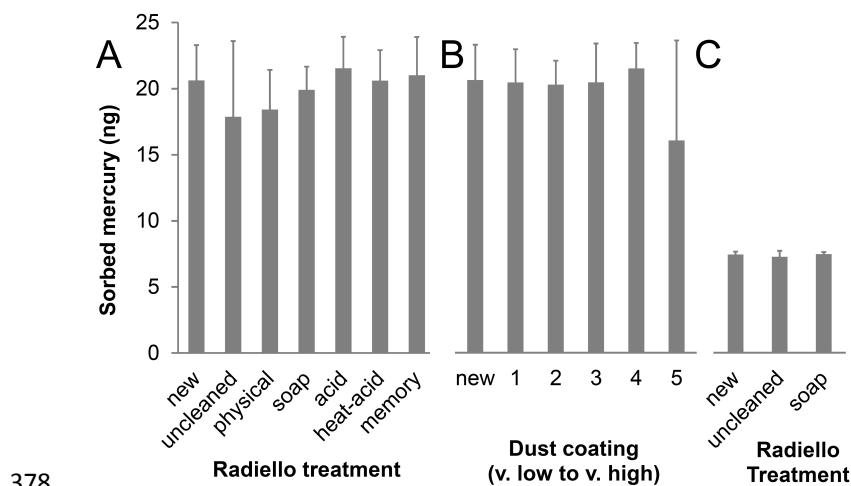
328 **3.2 Temperature and relative humidity**

329 Relative humidity, tested at 44, 60, and 80% and a stable temperature of $20 \text{ }^{\circ}\text{C}$, had no
330 significant effect on *SR* ($p = 0.080$; see Fig. S5). It is therefore appropriate to analyze the effect
331 of temperature on *SR* despite small variations in RH at different temperature levels. We
332 observed a significant, positive, linear relationship between *SR* and temperature ($p < 0.001$; Fig.
333 2) corresponding to a $0.001 \text{ m}^3 \text{ day}^{-1}$ increase in *SR* for every $1 \text{ }^{\circ}\text{C}$ increase in temperature (or
334 0.7% of the calibrated *SR*). This relationship remained linear across the tested range from -15 to
335 $35 \text{ }^{\circ}\text{C}$.

336 Temperature can affect the *SR* because of its impact on (i) the partitioning equilibrium between
337 the sorbent and the gas phase and (ii) the diffusion coefficient (McLagan et al., 2016a;
338 Pennequin-Cardinal et al., 2005). The uptake capacity of the HGR-AC for gaseous Hg is
339 extremely high and we suspect that any change in the sorption equilibrium caused by changing
340 temperatures should have a negligible effect on the *SR*. The increase in diffusivity caused by an
341 increase in temperature is easily quantified. Fig. 2 also displays *SR* as a function of temperatures
342 predicted with a previously described model based on Fick’s first law of diffusion (McLagan et
343 al., 2016b). While the predicted *SRs* are $\sim 8\%$ lower than the measured ones, the slope of the
344 relationship between *SR* and temperature is the same (no significant difference, z-score test, p
345 = 0.427), confirming that the effect of temperature on the diffusivity of gaseous Hg is sufficient
346 to explain the observed temperature dependence of the *SR*.

347

348 **Figure 2: The effect of temperature on the sampling rate of a passive air sampler for gaseous mercury**
349 **as determined experimentally (blue) and as calculated using the diffusion model (red) by McLagan et**
350 **al. (2016b). The measured and calculated temperature dependence, given by the slopes of the**
351 **relationships, are not significantly different.**


352 Earlier studies on PAS for gaseous Hg did not observe an effect of temperature on SR. Guo et al.
353 (2014) found no significant effect of temperature on the SR of their activated carbon based PAS
354 between -10 and 35 $^{\circ}\text{C}$. Similarly, there was no effect of temperature on the SR of a PAS using a
355 solid gold sorbent and a white Radiello[®] diffusive body (Skov et al., 2007). In neither case,
356 however, was the precision of the measurement sufficient to detect the small dependence of
357 SR on temperature caused by the effect of temperature on diffusivity. Such a small temperature
358 effect can only be detected in a highly precise sampler.

359 **3.3 Radiello[®] reuse**

360 In the Radiello[®] reuse experiment conducted indoors, no significant difference in the amount of
361 sorbed Hg was observed between *new*, *uncleaned*, or any of the cleaned Radiellos[®] (ANOVA, p
362 = 0.467; Fig. 3(A)). Similarly, when we ignore the effect of cleaning, no significant difference in
363 the sorbed amount of Hg was observed between Radiellos[®] with different degrees of dust
364 coatings, including the new Radiellos[®] (ANOVA, p = 0.841; Fig. 3(B)). The cleaning treatments
365 also did not differ in terms of the observed variances (Levene's Test, p = 0.307). However, the

366 amount of Hg taken up in Radiellos® with the most dust (category 5) had a significantly higher
367 variance than all other treatments ($p = 0.004$, Levene's Test with Tukey's Honest Significant
368 Difference post hoc test). Although the differences between all Radiello® treatments in the
369 indoor Radiello® reusability experiments are small, the significantly higher variability observed
370 for Radiellos® with the highest dust coating suggests some form of cleaning would be better in
371 maintaining the high level of precision of this PAS. Effect size, using Cohen's d value (see S5),
372 was then applied to examine differences in treatments without the use of traditional binary
373 hypotheses testing (See Table S3). In comparison to new Radiellos® *soap*, *acid*, and *heat-acid*
374 were the most effective treatments. While there was no significant difference in means
375 (ANOVA; $p = 0.548$) or variances (Levene's; $p = 0.221$) for the outdoor experiment testing *new*,
376 *uncleaned*, and *soap* Radiellos®, effect size analysis (see S5) confirmed that *soap* cleaning is an
377 effective method in preparing used Radiellos® for redeployment (Fig. 4(C)).

378
379 **Figure 3: Mean sorbed mercury for differing Radiello® cleaning treatments and at varying degrees of**
380 **HGR-AC dust coating inside the Radiello® (Panel B) from indoor experiment. Cleaning treatments and**
381 **degree of dust coating is described in Sect. 2.2.3. Panel A also includes the memory effect treatment,**
382 **which were uncleaned Radiellos® from deployments in a high concentration environment. Panel C**
383 **presents the mean sorbed mercury for differing Radiello® cleaning treatments from outdoor**
384 **experiment.**

385 Uptake of Hg in uncleaned Radiellos® previously deployed in gaseous Hg concentrations 2 – 4
386 orders of magnitude higher than the other Radiellos® (*memory* treatment) was also not
387 significantly different from any of the other treatments in terms of mean (ANOVA: $p = 0.499$) or

388 variance (Levene's: $p = 0.307$; Fig. 3(A)). This implies that very little Hg was sorbed to the
389 Radiello® and re-released during the subsequent deployment and that gaseous Hg has little
390 affinity for the porous high-density polyethylene diffusive membrane of the Radiello®.

391 4. RECOMMENDATIONS AND CONCLUSIONS

392 While the *SR* of the PAS in its standard configuration (white Radiello® with protective shield)
393 was found to depend on both wind speed and temperature, the effects are both small and
394 predictable. The accuracy of volumetric air concentrations derived from the PAS can be
395 improved by applying adjustment factors to the *SR*, especially for deployments at or close to
396 background gaseous Hg concentrations. The *SR* of the standard configuration PAS (white
397 Radiello® with shield) deployed outdoors of $0.121 \text{ m}^3 \text{ day}^{-1}$ was obtained for a mean wind
398 speed of 1.89 m s^{-1} and a mean temperature of 7.6°C .¹⁵ We recommend to use the increments
399 from Fig. 1 and Fig. 2, i.e. $0.003 \text{ m}^3 \text{ day}^{-1}$ increase in *SR* for every m s^{-1} increase in wind speed
400 and $0.001 \text{ m}^3 \text{ day}^{-1}$ increase in *SR* for every 1°C increase in temperature to adjust the *SR* of
401 $0.121 \text{ m}^3 \text{ day}^{-1}$ to the average temperature and wind speed of each PAS deployment (See S6 for
402 *SR* adjustment equation and sample calculation).

403 The experiments here predict a *SR* of $0.142 \text{ m}^3 \text{ day}^{-1}$ for an average wind speed of 1.89 m s^{-1}
404 (Fig. 1) and a *SR* of $0.141 \text{ m}^3 \text{ day}^{-1}$ for an average temperature of 7.6°C (Fig. 2). Both these
405 values are greater than the *SR* of $0.121 \text{ m}^3 \text{ day}^{-1}$ from the calibration study (McLagan et al.,
406 2016b). While we presently do not know the reason for this discrepancy, it may be related to
407 the relatively short deployment periods used in the present experiments. As mentioned above,
408 short deployment at background concentrations yield a *SR* with a higher uncertainty. Also,
409 McLagan et al. (2016b) observed that *SR* for PAS deployed outdoors for less than 1-2 months
410 were higher than the *SR* derived for the entire one-year sampling period. Despite this slight
411 discrepancy, we note that the y-intercepts of the relationships reported here (the magnitude of
412 the *SR*) are less important than their slopes (i.e. the temperature and wind speed adjustment
413 factors). An ongoing study measuring the uptake of gaseous Hg in PAS deployed at several
414 locations with widely different temperature and wind speed conditions will help refine both the

415 *SR* applicable to outdoor deployments and the validity of the laboratory derived adjustment
416 factors for temperature and wind speed reported here.

417 When designing a PAS, there is a need to strike a balance between maximizing the *SR* and
418 minimizing the variability in the *SR* caused by factors such as wind speed, objectives that are
419 contradictory in nature (McLagan et al., 2016a). Although using a thicker, yellow Radiello® with
420 or without a protective shield are the methods least affected by wind, the *SR* for these methods
421 is approximately half that of the white Radiello® with a shield. A lower *SR* translates to lower
422 amounts of sorbed Hg, which means that longer deployments are required to reach method
423 quantification limits (MQL). The PAS configuration with white Radiello® and windshield needs
424 to be exposed to typical background concentrations of gaseous Hg ($\sim 1.5 - 2 \text{ ng m}^{-3}$) for
425 approximately one week to reach levels above MQL (McLagan et al., 2016b). A PAS with yellow
426 Radiello would presumably require deployments twice as long. For either configuration, longer
427 deployments of a month or more are likely to yield greater accuracy. Given the possibility of
428 adjusting the *SR* for the slight effect caused by wind speeds above 1 m s^{-1} and the shorter
429 minimum deployment times, we recommend the PAS configuration with a shielded white
430 Radiello for most outdoor deployments. Nonetheless, there may be long deployments under
431 highly variable winds that warrant the use of the yellow Radiello®. A full long-term calibration
432 study outdoors would be advisable prior to using this configuration.

433 Finally, our results suggest that previously deployed Radiello® are indeed reusable as long as
434 the Radiellos® are cleaned between deployments. Because the different cleaning methods were
435 generally equally effective, we recommend the use of the *soap* method because of its overall
436 ease and health, safety and waste benefits over using acids (Anastas and Warner, 1998).

437 **Data Availability**

438 Data can be found in the paper, the SI, or via communication with the corresponding author.

439 **Competing Interests**

440 The authors declare that they have no conflicts of interest.

441 **Acknowledgements**

442 We acknowledge funding from Strategic Project Grant #463265-14 by the Natural Sciences and
443 Engineering Research Council of Canada (NSERC) and an NSERC Alexander Graham Bell Canada
444 Graduate Scholarship. We thank S. Steffen of Environment and Climate Change Canada for the
445 loan of the Tekran instrument and B. Branfireun, S. Bartlett, C. Hamilton, and A. Craig from
446 Western University for providing access to the BIOTRON facility.

447 **References**

448 Anastas, P. T., and Warner, J. C.: Green chemistry: Theory and practice, Oxford University Press,
449 New York, USA, 152 pp., 1998.

450 Armitage, J. M., Hayward, S. J., and Wania, F.: Modeling the uptake of neutral organic chemicals
451 on XAD passive air samplers under variable temperatures, external wind speeds and ambient
452 air concentrations (PAS-SIM), *Enviro. Sci. Technol.*, 47, 13546-13554, 2013.

453 Bartkow, M. E., Booij, K., Kennedy, K. E., Müller, J. F., and Hawker, D. W.: Passive air sampling
454 theory for semivolatile organic compounds, *Chemosphere*, 60, 170-176,
455 <http://dx.doi.org/10.1016/j.chemosphere.2004.12.033>, 2005.

456 Brown, R. J. C., Kumar, Y., Brown, A. S., and Kim, K.-H.: Memory effects on adsorption tubes for
457 mercury vapor measurement in ambient air: elucidation, quantification, and strategies for
458 mitigation of analytical bias, *Environ. Sci. Technol.*, 45, 7812-7818, 2011.

459 Brown, R. J. C., Burdon, M. K., Brown, A. S., and Kim, K.-H.: Assessment of pumped mercury
460 vapour adsorption tubes as passive samplers using a micro-exposure chamber, *J. Environ.*
461 *Monitor.*, 14, 2456-2463, 10.1039/C2EM30101F, 2012.

462 Cole, A. S., and Steffen, A.: Trends in long-term gaseous mercury observations in the Arctic and
463 effects of temperature and other atmospheric conditions, *Atmos. Chem. Phys.*, 10, 4661-4672,
464 10.5194/acp-10-4661-2010, 2010.

465 Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.: Mercury as a global
466 pollutant: sources, pathways, and effects, *Environ. Sci. Technol.*, 47, 4967-4983, 2013.

- 467 Guo, H., Lin, H., Zhang, W., Deng, C., Wang, H., Zhang, Q., Shen, Y., and Wang, X.: Influence of
468 meteorological factors on the atmospheric mercury measurement by a novel passive sampler,
469 *Atmos. Environ.*, 97, 310-315, 2014.
- 470 Gustin, M. S., Lyman, S. N., Kilner, P., and Prestbo, E.: Development of a passive sampler for
471 gaseous mercury, *Atmos. Environ.*, 45, 5805-5812,
472 <http://dx.doi.org/10.1016/j.atmosenv.2011.07.014>, 2011.
- 473 Huang, J., Lyman, S. N., Hartman, J. S., and Gustin, M. S.: A review of passive sampling systems
474 for ambient air mercury measurements, *Environ. Sci. Process. Impacts*, 16, 374-392, 2014.
- 475 Lozano, A., Usero, J., Vanderlinden, E., Ræz, J., Contreras, J., and Navarrete, B.: Air quality
476 monitoring network design to control nitrogen dioxide and ozone, applied in Malaga, Spain,
477 *Microchem. J.*, 93, 164-172, <http://dx.doi.org/10.1016/j.microc.2009.06.005>, 2009.
- 478 McLagan, D. S., Mazur, M. E. E., Mitchell, C. P. J., and Wania, F.: Passive air sampling of gaseous
479 elemental mercury: a critical review, *Atmos. Chem. Phys.*, 16, 3061-3076, 10.5194/acp-16-3061-
480 2016, 2016a.
- 481 McLagan, D. S., Mitchell, C. P. J., Huang, H., Lei, Y. D., Cole, A. S., Steffen, A., Hung, H., and
482 Wania, F.: A High-Precision Passive Air Sampler for Gaseous Mercury, *Environ. Sci. Technol.*
483 Lett., 3, 24-29, 10.1021/acs.estlett.5b00319, 2016b.
- 484 McLagan, D. S., Huang, H., Lei, Y. D., Wania, F., and Mitchell, C. P. J.: Prevention of catalyst
485 poisoning in automated atomic absorption spectroscopy instruments for analysis of total
486 mercury samples with high sulphur content, Submitted to: *Spectrochim Acta B*, 2017.
- 487 Moeckel, C., Harner, T., Nizzetto, L., Strandberg, B., Lindroth, A., and Jones, K. C.: Use of
488 depuration compounds in passive air samplers: Results from active sampling-supported field
489 deployment, potential uses, and recommendations, *Environ. Sci. Technol.*, 43, 3227-3232, 2009.
- 490 New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of surface climate over
491 global land areas, *Climate research*, 21, 1-25. URL of data:
492 <https://crudata.uea.ac.uk/cru/data/hrg/tmc/>, 2002.

- 493 Pennequin-Cardinal, A., Plaisance, H., Locoge, N., Ramalho, O., Kirchner, S., and Galloo, J.-C.:
494 Performances of the Radiello® diffusive sampler for BTEX measurements: Influence of
495 environmental conditions and determination of modelled sampling rates, *Atmos. Environ.*, 39,
496 2535-2544, <http://dx.doi.org/10.1016/j.atmosenv.2004.12.035>, 2005.
- 497 Peterson, C., Gustin, M., and Lyman, S.: Atmospheric mercury concentrations and speciation
498 measured from 2004 to 2007 in Reno, Nevada, USA, *Atmos. Environ.*, 43, 4646-4654,
499 <http://dx.doi.org/10.1016/j.atmosenv.2009.04.053>, 2009.
- 500 Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R., Friedli, H., Leaner, J., Mason, R., Mukherjee,
501 A., Stracher, G., and Streets, D.: Global mercury emissions to the atmosphere from
502 anthropogenic and natural sources, *Atmos. Chem. Phys.*, 10, 5951-5964, 2010.
- 503 Plaisance, H., Sagnier, I., Saison, J., Galloo, J., and Guillermo, R.: Performances and application
504 of a passive sampling method for the simultaneous determination of nitrogen dioxide and
505 sulfur dioxide in ambient air, *Environ. Monitor. Assess.*, 79, 301-315, 2002.
- 506 Plaisance, H., Piechocki-Minguy, A., Garcia-Fouque, S., and Galloo, J. C.: Influence of
507 meteorological factors on the NO₂ measurements by passive diffusion tube, *Atmos. Environ.*,
508 38, 573-580, <http://dx.doi.org/10.1016/j.atmosenv.2003.09.073>, 2004.
- 509 Plaisance, H.: The effect of the wind velocity on the uptake rates of various diffusive samplers,
510 *International Journal of Environmental Analytical Chemistry*, 91, 1341-1352,
511 10.1080/03067311003782625, 2011.
- 512 Restrepo, A. R., Hayward, S. J., Armitage, J. M., and Wania, F.: Evaluating the PAS-SIM model
513 using a passive air sampler calibration study for pesticides, *Environ. Sci. Process. Impacts*, 17,
514 1228-1237, 2015.
- 515 Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina, L. T.,
516 Márquez, C., Cárdenas, B., and de Foy, B.: In situ measurements of speciated atmospheric
517 mercury and the identification of source regions in the Mexico City Metropolitan Area, *Atmos.*
518 *Chem. Phys.*, 9, 207-220, 10.5194/acp-9-207-2009, 2009.

- 519 Selin, N. E.: Global biogeochemical cycling of mercury: a review, *Annu. Rev. Env. Resour.*, 34, 43-
520 63, doi:10.1146/annurev.environ.051308.084314, 2009.
- 521 Shoeib, M., and Harner, T.: Characterization and comparison of three passive air samplers for
522 persistent organic pollutants, *Environ. Sci. Technol.*, 36, 4142-4151, 2002.
- 523 Skov, H., Sørensen, B. T., Landis, M. S., Johnson, M. S., Sacco, P., Goodsite, M. E., Lohse, C., and
524 Christiansen, K. S.: Performance of a new diffusive sampler for Hg0 determination in the
525 troposphere, *Environ. Chem.*, 4, 75-80, <http://dx.doi.org/10.1071/EN06082>, 2007.
- 526 Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S.,
527 Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M.
528 E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C.: A synthesis of
529 atmospheric mercury depletion event chemistry in the atmosphere and snow, *Atmos. Chem.
530 Phys.*, 8, 1445-1482, 10.5194/acp-8-1445-2008, 2008.
- 531 Steffen, A., Scherz, T., Olson, M., Gay, D., and Blanchard, P.: A comparison of data quality
532 control protocols for atmospheric mercury speciation measurements, *J. Environ. Monitor.*, 14,
533 752-765, 2012.
- 534 UNEP: Minamata Convention on Mercury: Text and Annexes, United Nations Environmental
535 Programme, Geneva, Switzerland, 67, 2013.
- 536 USEPA: Method 7473: Mercury in solids and solutions by thermal decomposition,
537 amalgamation, and atomic absorption spectrophotometry, United States Environmental
538 Protection Agency, Washington, 17, 2007.
- 539 Zhang, W., Tong, Y., Hu, D., Ou, L., and Wang, X.: Characterization of atmospheric mercury
540 concentrations along an urban-rural gradient using a newly developed passive sampler, *Atmos.
541 Environ.*, 47, 26-32, <http://dx.doi.org/10.1016/j.atmosenv.2011.11.046>, 2012.
- 542 Zhang, X., Brown, T. N., Ansari, A., Yeun, B., Kitaoka, K., Kondo, A., Lei, Y. D., and Wania, F.:
543 Effect of wind on the chemical uptake kinetics of a passive air sampler, *Environ. Sci. Technol.*,
544 47, 7868-7875, 2013.